
Introduction
The abundance of hacking and espionage in the
world has created an unsecure network environment.
Despite ever increasing attempts by corporations and
governments to protect its data, major attacks are still
common. But with the volume of critical data transfer in
today’s world – from government agencies to retailers,
banks and corporations – the need for secure data
sharing remains critical.

Sorrento Networks International has taken the steps to
provide a solution for both public and private network
structures, based on the most recent government
standards. The Advanced Encryption Standard (AES)
went into effect as a government standard on May
26, 2002. AES is the first publicly accessible and open
cipher approved by the U.S. National Security Agency
(NSA) for top secret information.

Sorrento Networks’ Optical Data Centre (ODC2) line
card provides a complete and automated solution to
ensure data is transported reliably and fully secure. The
main features of the ODC line card are:

 > Use of standard 256-bit AES algorithm based on
the National Institute of Standards and Technology
(NIST) FIPS 140 publication.

 > An additional safeguard that scrambles the shared
encryption key as it is exchanged end-to-end over a
public or private network.

 > Automatic generation of a 256-bit seed used in the
encryption and decryption key generation.

 > Secure encryption handshaking using the
recommended Diffie-Hellman key exchange.

 > Constant altering of the encryption key
synchronously at each end of the line without data
disruption.

White Paper
AES-256 Encryption Using the
ODC2 Line Card

Diffie-Hellman
The first step for a secure encryption process is the
establishment of a shared key used by the encryption
and decryption algorithm. The important aspects of
this operation is that it must be extremely difficult to
decode and only shared with the two designated end
points.

There are several recommended methods within
the industry that provide a means for two parties to
secretly handshake in order to negotiate a shared key
over an insecure communications network. One of the
earliest methods developed and now widely used is
the Diffie-Hellman key exchange. The key part of the
process is that a coded message is shared across the
network and used to generate an identical key that is
nearly impossible to reverse by another party that might
be listening.

The original implementation of the Diffie-Hellman
protocol used the multiplicative group of integers:
modulo p, where p is prime and g is a primitive root
modulo p. Since there isn’t a reverse operation for
modulus calculations, the security stems from the
difficulty of calculating the discrete logarithms of very
large numbers.

In order to start the Diffie-Hellman exchange, the two
parties must agree on two non-secret numbers. The
first number is g, the generator, and second number
is p, the modulus. These numbers can be made public
and are usually chosen from a table of known values.
g is usually a very small number while p is a very large
prime number. Next, each party generates its own
secret value. Then, based on g, p, and the secret value,
each party calculates its public value. The public value is
computed according to the formula: Y = gx mod p.

In this formula, x is the secret value and Y is the public

value. After computing the public values, the two
parties exchange their public values. Each party then
exponentiates the received public value with its secret
value to compute a common shared secret value. When
the algorithm completes, both parties have the same
shared secret which they have computed from their
secret value and the public value of the other party.

The following explains the steps executed by the
encryption algorithm (Gracie) and decryption algorithm
(George).

1. Gracie and George agree to use a prime number p =
23 and base g = 5 (which is a primitive root modulo
23).

2. Gracie chooses a secret integer a = 6, then sends
George a, where a = ga mod p. For this example,
a = 56 mod 23 = 8.

3. George chooses a secret integer b = 15, then sends
Gracie b, where b = gb mod p. For this example, b =
515 mod 23 = 19.

4. Gracie then computes e = ba mod p, that is, e = 196
mod 23 = 2.

5. George computes e = 815 mod 23 = 2.

6. Gracie and George now share a secret encryption
number e = 2.

Both the encryption and decryption circuits have
arrived at the same value because (ga)b and (gb)a are
equal mod p. Note that only a, b, and (gab mod p = gba
mod p) are kept secret. All the other values are sent
in the clear. Once the secret encryption number is
computed and sent, the resultant encryption key can
be used for sending messages across the same open
communications channel.

Of course, much larger values of a, b, and p would be
needed to make this example secure. However, if p is
a prime number of at least 256 digits, and a and b are
at least 100 digits long, the fastest modern computer
could not determine a given any or all of the other
variables.

The previous paragraphs describe the key exchange
process, but this alone is not enough to provide a
secure network. It’s possible for a hacker to tap onto a
communications channel with an equivalent decryption
machine and override the destination node with its
own. To prevent unwanted “listeners” to participate in
the key exchange, further scrambling and handshaking
needs to take place across the network to insure the
correct endpoints are synchronized. The Sorrento
ODC2 line card takes this extra step by requiring the
user to enter a 32-character word that is password
protected. The 32-character word will be identical at
each end point and used to scramble the handshaking

AES-256 Encryption Using the ODC2 Line Card White Paper - Sorrento Networks

sequence and secret scrambling number shared
between the encryption and decryption circuits.

AES Encryption Process
AES comprises three block ciphers, AES-128, AES-
192, and AES-256. Each cipher encrypts and decrypts
data blocks of 128 bits using cryptographic keys of
128-, 192-, and 256-bits, respectively. Symmetric or
secret-key ciphers use the same key for encrypting and
decrypting, so both the sender and the receiver must
know and use the same secret key. All key lengths are
deemed sufficient to protect classified information
up to the “Secret” level with “Top Secret” information
requiring 192- or 256-bit lengths. There are 10 rounds
for 128-bit keys, 12 rounds for 192-bit keys, and 14
rounds for 256-bit keys. A round consists of several
processing steps that include substitution, transposition,
and mixing of the input plaintext and transform it into
the final output of ciphertext.

Sorrento Networks' ODC2 Encryption
Operation
The ODC2 line card performs encryption/decryption
over standard optical traffic following the AES-256
specifications. The unique design allows encryption to
be used at any of the line rates supported by the ODC2
line card. The Diffie-Hellman key exchange is used to
share a secret key between the two endpoints of the
data channel.

The encryption process utilizes the AES-GCM core with
a 64-bit word-based data interface to implement the
block cipher confidentiality and authentication routines.
The core can support various key sizes (GCM = 256
for this design), a fixed nonce/IV size of 128 bits, and a
fixed length tag (Message Integrity Check or MIC).

The AES-256 Core integrates together all of the
AES and Hash functions together with the counter
mode logic, hash length counters, final block padding,
and tag appending and checking features. External
framing circuitry is also included. The frames establish
a demarcation where frame overhead and collateral
system information such as Initial Vectors (IV), Key
Update messages, and Message Integrity Codes are

passed in the clear while the data itself is encrypted.

The hardware has a Crypto Layer Management interface
which implements commands for encryption to be
enabled or disabled, allows new keys to be loaded
slightly ahead of time, coordinates key changes to be
initiated at the transmit end, and provides status on
MIC failures at the receive end.

The GigaMux system includes a key management task
in the embedded software. This task is responsible for
negotiating and computing keys at each end of the link,
and communicates with its peer using an unencrypted
low rate communications channel in the encrypted
frame overhead. At power-up (or on demand), fresh
master session keys for each direction are autonomously
negotiated using the Diffie-Hellman key exchange.

A cryptographic grade deterministic pseudo-random
number generator (PRNG) based on NIST SP800-90A
which is iterated identically at each end of the link,
provides a sequence of 256-bit AES link keys. These
keys are used to calculate a shared value used to
calculate a common encryption/decryption key. The
lifetime of a link key is operator-selectable from 10
minutes through to 1 day, thus limiting the amount of
data encrypted under a single key. Although the link
key is automatically updated at least once per day, an
internal counter is used to change the keys on every
frame boundary.

Link key changes are seamless to the optical client,
and are performed at multi-frame boundaries. The
encryption module maintains operation with the
current key, and has a holding register for the next key.
Sometime ahead of each key change, the GigaMux
Management Card (MPM2) calculates a new key. The Tx
encryption module then takes the lead by setting a “key
change” flag in the crypto overhead which is sent across
the optical link just before a multi-frame boundary. The
Rx encryption module acts on receipt of this flag and
changes to the next key at the same point in the data
stream.

The client frames are grouped into cryptographic
messages covering 8 x 510 64-bit words. Each
cryptographic message is processed by the hardware

AES-256 Encryption Using the ODC2 Line Card White Paper - Sorrento Networks

encryption module using AES-256 which provides
confidentiality using counter mode (CTR) and integrity
using a Galois hash calculation. Overhead is added
to the proprietary frame format to allow transmission
of a cryptographic Initialization Vector (12 bytes) and
Message Integrity Check (16 bytes) for each message.
The overhead also provides status flags for controlling
key changes and reverse indication of MIC and IV replay
failures from the receiving end.

The generation of IVs is autonomous in the Tx
encryption module. The Tx end inserts the IV into the
frame overhead before each message, and the Rx end
extracts it from the frame for decryption. For GCM,
the requirement for each message IV to be unique is
met by using a simple counter for the IV, which is reset
every time a new key is loaded. Note that IV exhaustion
is not possible as the IV counter size (32-bits) can
accommodate data rates up to 14.025G within the
lifetime of the key.

The GCM algorithm requires that data is not forwarded
on until the MIC is verified. This requires a store &
forward stage after the line-rate decryption for the
entire cryptographic message, since the MIC validation
cannot be completed until a short time after the last

message data is received.

This buffering adds a latency of approximately 17.3us
at the Rx end at 14Gbps (60us at 4Gbps). A message
in which the MIC fails has the frame payloads replaced
with a NULL payload, and the appropriate alarms and
statistics counters are updated.

Conclusion
Encryption is essential to insure the private transfer
of sensitive data across a public or private network.
AES-256 has been tested and approved by the US
government and is the standard means for high security
networks. Another aspect for secure networks is the
ability to exchange encryption keys across the network
in a secretive fashion. Diffie-Hellman is an accepted
method but this alone is not enough as an unknown
source could be listening and trying to synchronize with
the encryption source. To prevent this, another layer of
coordinated handshaking between the two end-points
must be created. Sorrento Networks International has
built these processes into its ODC2 line card to insure
complete privacy of all encryption functions and most
importantly, your private data.

AES-256 Encryption Using the ODC2 Line Card White Paper - Sorrento Networks

About Sorrento Networks
Sorrento Networks is a global provider of cost-effective optical transport solutions to
carriers and enterprises throughout North America and Europe. Sorrento Networks is part
of The Comtek Group, with facilities in the UK, USA, Netherlands, Turkey and Germany.

@SorrentoNetwork Sorrento Networks

Phone: +44 (0)1244 280390 • Email: sales@sorrentonet.com • Web: www.sorrentonetworks.com

