
Introduction
The abundance of hacking and espionage in the 
world has created an unsecure network environment. 
Despite ever increasing attempts by corporations and 
governments to protect its data, major attacks are still 
common. But with the volume of critical data transfer in 
today’s world – from government agencies to retailers, 
banks and corporations – the need for secure data 
sharing remains critical.

Sorrento Networks International has taken the steps to 
provide a solution for both public and private network 
structures, based on the most recent government 
standards. The Advanced Encryption Standard (AES) 
went into effect as a government standard on May 
26, 2002. AES is the first publicly accessible and open 
cipher approved by the U.S. National Security Agency 
(NSA) for top secret information. 

Sorrento Networks’ Optical Data Centre (ODC2) line 
card provides a complete and automated solution to 
ensure data is transported reliably and fully secure. The 
main features of the ODC line card are:

 > Use of standard 256-bit AES algorithm based on 
the National Institute of Standards and Technology 
(NIST) FIPS 140 publication. 

 > An additional safeguard that scrambles the shared 
encryption key as it is exchanged end-to-end over a 
public or private network.

 > Automatic generation of a 256-bit seed used in the 
encryption and decryption key generation. 

 > Secure encryption handshaking using the 
recommended Diffie-Hellman key exchange. 

 > Constant altering of the encryption key 
synchronously at each end of the line without data 
disruption.
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Diffie-Hellman
The first step for a secure encryption process is the 
establishment of a shared key used by the encryption 
and decryption algorithm. The important aspects of 
this operation is that it must be extremely difficult to 
decode and only shared with the two designated end 
points.

There are several recommended methods within 
the industry that provide a means for two parties to 
secretly handshake in order to negotiate a shared key 
over an insecure communications network. One of the 
earliest methods developed and now widely used is 
the Diffie-Hellman key exchange. The key part of the 
process is that a coded message is shared across the 
network and used to generate an identical key that is 
nearly impossible to reverse by another party that might 
be listening. 

The original implementation of the Diffie-Hellman 
protocol used the multiplicative group of integers: 
modulo p, where p is prime and g is a primitive root 
modulo p. Since there isn’t a reverse operation for 
modulus calculations, the security stems from the 
difficulty of calculating the discrete logarithms of very  
large numbers.

In order to start the Diffie-Hellman exchange, the two 
parties must agree on two non-secret numbers. The 
first number is g, the generator, and second number 
is p, the modulus. These numbers can be made public 
and are usually chosen from a table of known values. 
g is usually a very small number while p is a very large 
prime number. Next, each party generates its own 
secret value. Then, based on g, p, and the secret value, 
each party calculates its public value. The public value is 
computed according to the formula: Y = gx mod p.

In this formula, x is the secret value and Y is the public



value. After computing the public values, the two 
parties exchange their public values. Each party then 
exponentiates the received public value with its secret 
value to compute a common shared secret value. When 
the algorithm completes, both parties have the same 
shared secret which they have computed from their 
secret value and the public value of the other party.

The following explains the steps executed by the 
encryption algorithm (Gracie) and decryption algorithm 
(George).

1. Gracie and George agree to use a prime number p = 
23 and base g = 5 (which is a primitive root modulo 
23).

2. Gracie chooses a secret integer a = 6, then sends 
George a, where a = ga mod p. For this example,      
a = 56 mod 23 = 8.

3. George chooses a secret integer b = 15, then sends 
Gracie b, where b = gb mod p. For this example, b = 
515 mod 23 = 19.

4. Gracie then computes e = ba mod p, that is, e = 196 
mod 23 = 2.

5. George computes e = 815 mod 23 = 2.

6. Gracie and George now share a secret encryption 
number e = 2.

Both the encryption and decryption circuits have 
arrived at the same value because (ga)b and (gb)a are 
equal mod p. Note that only a, b, and (gab mod p = gba 
mod p) are kept secret. All the other values are sent 
in the clear. Once the secret encryption number is 
computed and sent, the resultant encryption key can 
be used for sending messages across the same open 
communications channel.

Of course, much larger values of a, b, and p would be 
needed to make this example secure. However, if p is 
a prime number of at least 256 digits, and a and b are 
at least 100 digits long, the fastest modern computer 
could not determine a given any or all of the other 
variables.

The previous paragraphs describe the key exchange 
process, but this alone is not enough to provide a 
secure network. It’s possible for a hacker to tap onto a 
communications channel with an equivalent decryption 
machine and override the destination node with its 
own. To prevent unwanted “listeners” to participate in 
the key exchange, further scrambling and handshaking 
needs to take place across the network to insure the 
correct endpoints are synchronized. The Sorrento 
ODC2 line card takes this extra step by requiring the 
user to enter a 32-character word that is password 
protected. The 32-character word will be identical at 
each end point and used to scramble the handshaking 
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sequence and secret scrambling number shared 
between the encryption and decryption circuits.

AES Encryption Process
AES comprises three block ciphers, AES-128, AES-
192, and AES-256. Each cipher encrypts and decrypts 
data blocks of 128 bits using cryptographic keys of 
128-, 192-, and 256-bits, respectively. Symmetric or 
secret-key ciphers use the same key for encrypting and 
decrypting, so both the sender and the receiver must 
know and use the same secret key. All key lengths are 
deemed sufficient to protect classified information 
up to the “Secret” level with “Top Secret” information 
requiring 192- or 256-bit lengths. There are 10 rounds 
for 128-bit keys, 12 rounds for 192-bit keys, and 14 
rounds for 256-bit keys. A round consists of several 
processing steps that include substitution, transposition, 
and mixing of the input plaintext and transform it into 
the final output of ciphertext.

Sorrento Networks' ODC2 Encryption 
Operation
The ODC2 line card performs encryption/decryption 
over standard optical traffic following the AES-256 
specifications. The unique design allows encryption to 
be used at any of the line rates supported by the ODC2 
line card. The Diffie-Hellman key exchange is used to 
share a secret key between the two endpoints of the 
data channel.

The encryption process utilizes the AES-GCM core with 
a 64-bit word-based data interface to implement the 
block cipher confidentiality and authentication routines. 
The core can support various key sizes (GCM = 256 
for this design), a fixed nonce/IV size of 128 bits, and a 
fixed length tag (Message Integrity Check or MIC). 

The AES-256 Core integrates together all of the 
AES and Hash functions together with the counter 
mode logic, hash length counters, final block padding, 
and tag appending and checking features. External 
framing circuitry is also included. The frames establish 
a demarcation where frame overhead and collateral 
system information such as Initial Vectors (IV), Key 
Update messages, and Message Integrity Codes are

passed in the clear while the data itself is encrypted. 

The hardware has a Crypto Layer Management interface 
which implements commands for encryption to be 
enabled or disabled, allows new keys to be loaded 
slightly ahead of time, coordinates key changes to be 
initiated at the transmit end, and provides status on 
MIC failures at the receive end.

The GigaMux system includes a key management task 
in the embedded software. This task is responsible for 
negotiating and computing keys at each end of the link, 
and communicates with its peer using an unencrypted 
low rate communications channel in the encrypted 
frame overhead. At power-up (or on demand), fresh 
master session keys for each direction are autonomously 
negotiated using the Diffie-Hellman key exchange.

A cryptographic grade deterministic pseudo-random 
number generator (PRNG) based on NIST SP800-90A 
which is iterated identically at each end of the link, 
provides a sequence of 256-bit AES link keys. These 
keys are used to calculate a shared value used to 
calculate a common encryption/decryption key. The 
lifetime of a link key is operator-selectable from 10 
minutes through to 1 day, thus limiting the amount of 
data encrypted under a single key. Although the link 
key is automatically updated at least once per day, an 
internal counter is used to change the keys on every 
frame boundary.

Link key changes are seamless to the optical client, 
and are performed at multi-frame boundaries. The 
encryption module maintains operation with the 
current key, and has a holding register for the next key. 
Sometime ahead of each key change, the GigaMux 
Management Card (MPM2) calculates a new key. The Tx 
encryption module then takes the lead by setting a “key 
change” flag in the crypto overhead which is sent across 
the optical link just before a multi-frame boundary. The 
Rx encryption module acts on receipt of this flag and 
changes to the next key at the same point in the data 
stream.

The client frames are grouped into cryptographic 
messages covering 8 x 510 64-bit words. Each 
cryptographic message is processed by the hardware
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encryption module using AES-256 which provides 
confidentiality using counter mode (CTR) and integrity 
using a Galois hash calculation. Overhead is added 
to the proprietary frame format to allow transmission 
of a cryptographic Initialization Vector (12 bytes) and 
Message Integrity Check (16 bytes) for each message. 
The overhead also provides status flags for controlling 
key changes and reverse indication of MIC and IV replay 
failures from the receiving end.

The generation of IVs is autonomous in the Tx 
encryption module. The Tx end inserts the IV into the 
frame overhead before each message, and the Rx end 
extracts it from the frame for decryption. For GCM, 
the requirement for each message IV to be unique is 
met by using a simple counter for the IV, which is reset 
every time a new key is loaded. Note that IV exhaustion 
is not possible as the IV counter size (32-bits) can 
accommodate data rates up to 14.025G within the 
lifetime of the key.

The GCM algorithm requires that data is not forwarded 
on until the MIC is verified. This requires a store & 
forward stage after the line-rate decryption for the 
entire cryptographic message, since the MIC validation 
cannot be completed until a short time after the last

message data is received. 

This buffering adds a latency of approximately 17.3us 
at the Rx end at 14Gbps (60us at 4Gbps). A message 
in which the MIC fails has the frame payloads replaced 
with a NULL payload, and the appropriate alarms and 
statistics counters are updated.

Conclusion
Encryption is essential to insure the private transfer 
of sensitive data across a public or private network. 
AES-256 has been tested and approved by the US 
government and is the standard means for high security 
networks. Another aspect for secure networks is the 
ability to exchange encryption keys across the network 
in a secretive fashion. Diffie-Hellman is an accepted 
method but this alone is not enough as an unknown 
source could be listening and trying to synchronize with 
the encryption source. To prevent this, another layer of 
coordinated handshaking between the two end-points 
must be created. Sorrento Networks International has 
built these processes into its ODC2 line card to insure 
complete privacy of all encryption functions and most 
importantly, your private data.
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